Muon Front End Status

Chris Rogers,
Accelerator Science and Technology Centre (ASTeC),
Rutherford Appleton Laboratory

Muon Front End Status

- Overview of Front End Design
- Managing secondary particle contamination
- New cooling lattice design (Alekou)
- Costing and engineering progress

Baseline Front End

- Adiabatic B-field taper from Hg target to longitudinal drift
- Drift in ~1.5 T, ~100 m solenoid
- Adiabatically bring on RF voltage to bunch beam
- Phase rotation using variable frequencies
 - High energy front sees -ve E-field
 - Low energy tail sees +ve E-field
 - End up with smaller energy spread
- Ionisation Cooling
 - Try to reduce transverse beam size
 - Prototyped by MICE
 - Results in a beam suitable for acceleration

Secondary Particle Contamination

- Significant problem with secondary particles in the front end
 - Potentially activate the entire front end
 - Potentially activate later acceleration system
 - Kickers, septa, etc
 - Additional heat load on e.g. superconductors
 - Not acceptable
- Plan is to manage using chicane and proton absorber
 - Chicane removes high energy particles (p > 500 MeV/c)
 - Absorber removes low energy protons (p < 500 MeV/c)
 - Leaves low energy electrons and muons

Particle selection scheme

- Bent solenoid chicane induces vertical dispersion in beam
 - Single chicane will contain both signs
 - Opposite signs have dispersion in opposite sense
 - Dispersion is vertical
 - Little disruption to the actual beam
 - High momentum particles scrape
- Subsequent proton absorber to remove low momentum protons
 - Non-relativistic protons don't have much energy, even for relatively large momenta

Chicane acceptance

- •What happens when a finite beam is passed through the chicane?
- Look at emittance increase of a shell of particles on 4D hyperellipsoid
 - Initial amplitude typical of particles in the beam~ 50 mm
 - Shell in x-px-y-py phase space, initially matched to 1.5 T solenoid
- Not much emittance growth in front end momentum acceptance
 - Front end only designed to capture muons 100

Muons with momentum $\geq 500 \text{ MeV/c lost}$

Muon yield - chicane only

- In the absence of an absorber muon yield through the chicane is ok
 - Looks like about 5% reduction in yield
 - Note this uses full coil geometry
 - Match from field taper to 1.5 T region
 - Match from small coils to large coils (for RF)
 - Match from 1.5 T to cooling channel
 - Quite a bit of noise
- Preliminary studies on proton absorber + chicane

Muon yield - chicane plus absorber

- Getting a good muon yield requires reoptimisation of the muon capture
 - The longitudinal phase space gets messed up by the absorber
- Two approaches
 - Redo chicane in ICOOL (Neuffer)
 - Redo RF capture routines using G4Beamline (Rogers)
- Further optimisation in progress

Proton power escaping proton abs

- •Minimum proton power is in 1.25° case
- Basically the more absorber the better
 - A lot of noise at the 10⁻² level
 - For 100k primaries this is ~ few 10s of protons
- ■To avoid remote handling in the cooling section, we need to have proton background reject at 10⁻⁴ level

Power deposition

Power deposited, no absorber, no chicane

MARS Energy Deposition (Snopok)

- Investigating energy deposition on coils
 - 100-200 kW proton beam power is deposited in chicane
 - Can we use shielded superconducting coils?
 - Probably we need a normal conducting insert
 - Quite demanding field strengths

Particle Selection System - Summary

- We have a working design
- It looks good
 - Very high acceptance chicane
 - Excellent momentum cut-off
- Awaiting final optimisation
 - Needs re-optimisation of the RF capture
 - Reasonably complicated task
 - Just optimising the drift length, we get
 - ~ 20 % reduction in good muon yield with 100 mm absorber
 - ~ 30 % reduction in good muon yield with 200 mm absorber
 - Preliminary optimisations for full RF capture indicate
 - ~ 10 % reduction in good muon yield with 100 mm absorber
 - Probably we still end up with remote handling in the cooling channel
 - Unpleasant
- Then propose new baseline

Bucked coil lattice (Alekou)

- Well rehearsed problem of RF cavities in magnetic fields
- Still little experimental data for 200 MHz
- 800 MHz data indicates factor ~2-3 fall off in peak gradient for ~few
 T field
- (A Alekou) try shielding the RF from the coils?

Field

- Field on RF cavity is much reduced
 - Use bucking coil to shield cavity
 - Possibly enables higher field gradients in the cavity

Muon Yield

Lattice	$35~\mathrm{cm}$	50 cm	
FSIIA	238.9	232.0	

Lattice	30 cm	45 cm	60 cm	75 cm
BC-I	260.6	334.8	345.3	176.0
BC-II	288.2	403.4	521.1	279.2
BC-III	316.8	398.0	416.9	215.9
BC-IV	196.3	248.3	304.0	156.0
$BC-\alpha$	213.8	262.4	272.9	146.2
$BC-\beta$	172.0	214.3	223.7	120.6
BC-γ	139.1	173.2	180.0	98.7
$BC-\delta$	113.4	141.7	145.6	75.5
BC-a	139.1	177.1	188.2	124.6
BC-b	169.1	223.1	249.9	130.2
BC-c	209.0	272.2	382.3	202.5
BC-d	419.0	544.7	556.0	283.1
ВС-е	505.9	646.2	672.0	349.2
BC-f	610.8	777.0	812.3	419.4
BC-g	739.5	945.6	977.5	666.7

Only lattices with hoop stress < 200 MPa

Costing and Engineering

- •First round of engineering is in progress
 - First look at the optics design to bring forward to engineering design
 - Few geometry issues raised
 - Hope to get engineering feasibility on e.g. cooling channel

NF Adiabatic Buncher Section

Cavities are organised in 13 groups Each group has the same RF frequency

Plans

- Two new items may provoke a new baseline in coming months
 - Particle selection scheme
 - Revised cooling channel
- Particle selection scheme
 - Needs a comprehensive study on the muon yield (vs chicane bend vs proton absorber)
- Bucking coil scheme
 - Needs an integrated simulation with the standard baseline
 - Would be interesting to take this lattice back into the phase rotation
 - Waiting on MTA for 200 MHz results in field
- Costing/engineering
 - Turning up a few interesting issues
 - Need support from engineers to get a robust engineering design